If it's not what You are looking for type in the equation solver your own equation and let us solve it.
-1n^2+5n=0
a = -1; b = 5; c = 0;
Δ = b2-4ac
Δ = 52-4·(-1)·0
Δ = 25
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{25}=5$$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(5)-5}{2*-1}=\frac{-10}{-2} =+5 $$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(5)+5}{2*-1}=\frac{0}{-2} =0 $
| x+2=(-x+2) | | 14=6-2(t-1) | | -7x^2+4=-59 | | .4m–3=5m+2 | | 10=(-2x+3)=4x+30 | | .4m–3/5=5m+2/12 | | -5h-28=-58 | | 22=p8+ 18 | | 3/4=q+1/3 | | 6=1-5t | | 5(a+2)=90 | | k/6-10=-7 | | -45=-x+21+6x-21 | | 100=10(n+2) | | 25p^2–16=0 | | -3j+(-26)=53 | | 25p2–16=0 | | t/2-3=13 | | 78.5/3.14=x | | 5^(3x)=5^(x+8) | | -1=6+m/8 | | 14x−17=24x+23= | | a-8/2=-2 | | 14x−17=24x+23 | | 5t-2=-1 | | 19x=3x+26 | | -25=-7+3v | | -12.02+0.48-15.7b=18.67-13.8b | | 12-n5n=8 | | -6=x/2-2 | | 18=-x^2-8x | | 6/9=16/2x |